Sandra DeLozier Coleman

Writer, poet, artist, retired Professor of Mathematics
University of Connecticut at Avery Point
Niceville, Florida
My interest in art with mathematical elements includes poetry as well as several forms of visual art. In my algorithmic drawings, I explore the effect of basing a hand-drawn design on a set of well-defined steps, where the steps become apparent through their repetition.

In recent years, computer-generated images based on algorithmic repetitions have been the basis of many interesting and beautiful works of art. Many of these images, such as those related to the Mandelbrot Set, are far too intricate and complex to be produced without the aid of a computer, although the generating algorithms are often quite simple.

By contrast, my pen and ink drawings are hand drawn without the aid of technology or measuring devices. The designs may employ a number of complex steps, which are defined just clearly enough in my mind to be repeated in an observable pattern. An interesting challenge might be to develop a computer program that would employ mathematical elements, such as rotational symmetries, to generate near replicas of the hand-drawn designs!

An intriguing aspect of the collection is that viewers often see an image as akin to some biological entity, although the designs are based on nothing real in the natural world. The link to the natural world lies in the fact that most things that grow naturally grow algorithmically, passing through clearly defined stages of development that result in interesting patterns and symmetries. It would seem possible that a thorough mathematical analysis of an algorithmic drawing might create a bridge to a better understanding of the growth patterns and nature of certain plant and animal forms.
Algorithmic Pinwheel
25 x 21
ink on paper
2010
Black ink on paper. Design incorporates 90 degree rotational symmetry.