Jeffrey Stewart Ely

Associate Professor of Computer Science
Mathematical Sciences Department, Lewis and Clark College
Portland, Oregon

I am interested in applying computer graphical techniques to illuminate mathematical processes and
objects. Ideally, this can lead to a deeper understanding or at least to an increased appreciation and awareness of the process or object. Some of my projects are implemented as billions of particles, others use the ray tracing technique and hundreds of millions of rays. In either case, I do not use "canned" software, preferring to write the code myself to first principles.

Mandelbrot's Chandelier
Mandelbrot's Chandelier
24 inches x 18 inches
Digital print on archival paper
2012

The spherical chandelier is composed of squarish lenses. Inside the chandelier is a cubical
object that has been painted with the Mandelbrot set. Each of the lenses gives us a different
view of this object. This interior object and the individual lenses are all variations of
the quartic surface, x^4 + y^4 + z^4 = 1. The image was constructed using the ray
tracing technique and required the solution of over a billion quartic equations,
At^4 + Bt^3 + Ct^2 + Dt + E = 0, as the individual rays through each pixel were followed into this mathematical world of quartic surfaces. Snell's law was used to correctly model the
refraction of the rays as they passed through the lenses. Finally, the background also shows
a portion of the Mandelbrot set.