Moira Chas

Department of Mathematics
Stony Brook University
New York, USA
I work in low dimensional topology, and gravitate to mathematics that can be expressed in pictures. I have been trying to materialize math ideas with crochet for quite some time and recently came up with many ideas, among these, the pieces “Secret Hexagons” and “Tietze’s Dream”.
I really enjoy using my pieces to explain mathematics to people, no matter what their level of mathematical maturity.
Tietze's dream
8 x 30 x 25 cm
Crochet
Both pieces address the question
What is the maximum number of regions a surface can be divided into, so that each pair of regions share a length of their border (vertices don’t count)?
In the “two holed” torus, the maximum number is eight.
Secret Hexagons
5 x 35 x 35 cm
Crochet
Both pieces address the question
What is the maximum number of regions a surface can be divided into, so that each pair of regions share a length of their border (vertices don’t count)?
In the torus, the maximum number is seven.