Aiman Soliman

Research Scientist
NCSA, University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

Mathematical art is a unique form of artistic expression. Unlike other forms of art, the rigor of mathematics provides a guide for the imagination, although it could be restrictive sometimes compared to free artistic expression. Yet, these strict mathematical rules allow for judging, objectively, the success of an art project. I also find that mathematical artists share a similar experience with scientists in that solving a problem will usually lead to discovering another and, therefore, the continuation of their work in a natural way.

40 x 40 cm
Archival Digital Print

A flock of four swans got trapped in a Möbius strip-like space. In the beginning, they flew near the lower edge of their twisted space, but by completing a full cycle, they found themselves flying upside down near the upper edge of their orbit. Hoping to escape, they complete a second cycle to find themselves, where they started again. Here, I wanted to combine a 2D tessellation with a Möbius strip surface. I utilized two types of symmetries in this artwork. The first type is a true symmetry of the motif’s edges, which allowed the swans to lock together without leaving any gaps. The second is a pictorial symmetry (represented by the swans’ ventral and dorsal views) to imply the flip of the 'flat' swans after completing each circulation.