My work is motivated by a fascination with the occurrence of mathematical and scientific imagery in traditional art forms, and the frequently mystical or cosmological significance that can be attributed to such imagery. Mathematical themes both subtle and overt appear in a broad range of traditional art, from Medieval illuminated manuscripts to Buddhist mandalas, intricate tilings in Islamic architecture to restrained temple geometry paintings in Japan, complex patterns in African textiles to geometric ornament in archaic Greek ceramics. Often this imagery is deeply connected with how these cultures interpret and relate to the cosmos, in much the same way that modern scientific diagrams express a scientific worldview.
Artworks
These images are investigations of the subgroup structure of the icosahedral group (A5). At the center of each image is a graphical representation of A5, as formed by orientation-preserving pairs of reflections in circles and lines in the plane. This is surrounded by similar graphical representations of the seven conjugacy classes of (proper, non-trivial) subgroups of A5, with the trivial group depicted as the space outside of the large circular frame. The interstices between the group images indicate the relationships of inclusion between the different groups, with colors being used to distinguish maximal subgroup relationships, and small graphical markers used to indicate the particular numbers of conjugates involved in each relationship.