2024 Joint Mathematics Meetings
Elliot Kienzle
Artists
Statement
I believe in the pedagogical power of a pretty picture. It can get people interested, keep them engaged, and sometimes make the uncomprehended click. I use art to aid and explain math. Even when direct representation is impossible, art can convey how mathematical ideas fit together and some aspects of their flavor. I hope this can aid students and make high-level math more accessible. It takes years of dedicated study to appreciate the mathematics I want to convey, but anyone with eyes can appreciate the art. I try to take the beauty we mathematicians see in symbols and put it on the page for the world to see.
Artworks
This illustration was created to explain "symplectic reduction". Starting with a space with an "symplectic" structure and a continuous family of symmetries, symplectic reduction produces a lower-dimensional symplectic space by dividing out the symmetries. This acts as an organizing principle for understanding the structure of symplectic manifolds. When I think of symplectic manifolds, I feel how the swirling dynamics of a group splits the manifold into digestible symplectic reductions. This drawing is my best approximation of that vision, an MRI of the anatomy underneath every symmetric symplectic manifold.